| | | | |

Ethernet/IP Concurrent Connections for Critical Applications Now Available with CIP Safety

November 7, 2024

Ethernet/IP Concurrent Connections for Critical Applications Now Available with CIP Safety

ODVA is pleased to announce that the CIP SafetyTM on EtherNet/IPTM technology has been enhanced to allow for the use of Concurrent Connections for applications requiring both high availability and functional safety. Concurrent Connections allow for communication redundancy between multiple producing and consuming devices for the most critical automation processes. CIP Safety provides fail-safe communication between nodes such as safety I/O blocks, safety interlock switches, safety light curtains and safety controllers in both machine and process automation safety applications up to Safety Integrity Level (SIL) 3 according to IEC 61508 standards.

The use of Concurrent Connections with CIP Safety on EtherNet/IP allows for redundancy and functional safety to be integrated to ensure the best uptime and worker safety.

Concurrent Connections are CIP connections that support fault tolerance via redundant devices. Concurrent Connections enable many CIP connection paths, which allows data to be sent multiple times over multiple paths between the producing and consuming devices, independent of how the devices are physically interconnected. Originators, routers, and targets can all have multiple devices participating, and the Concurrent Connection and any of the duplicated device pairs can fulfill the role and the connection.

This reduces time that would otherwise be needed to detect failures and eliminates the time that would have to be spent switching between paired devices. The redundant pair send and receive data continuously, so even if a failure is detected in one of the devices, the control process can continue uninterrupted.

CIP Safety mitigates common errors that can result in hazardous situations via various techniques as described in IEC 61784-3-2. Time stamps are used with time expectation to detect if packets are lost, delayed, repeated or transmitted out of order. Unique device identifiers are used to authenticate the communication between two safety devices. Additional diagnostics and checks are included to validate that the messages are not corrupted in transit and all these features are separate from standard communication methods.

When these mitigations are put together as CIP Safety, a single connection between two devices (wired or wireless) can be used for communications certified up to SIL 3 per IEC 61508 and up to Category 4/PLe per ISO 13849-1.

“The availability of Concurrent Connections for CIP Safety on EtherNet/IP creates a whole new level of assurance that industrial networks will be both resilient and safe in the face of device failure or communication errors,” according to Dr. Al Beydoun, President and Executive Director of ODVA. “Concurrent Connections for CIP Safety is a win-win that offers the highest availability and functional safety together to enable the toughest applications to be handled while reducing injuries and increasing output.”

CIP Safety and Concurrent Connections have been available separately to provide industrial network functional safety and redundancy in the case of device errors or failure. The purpose of Concurrent Connections for CIP Safety is to provide automation network designers with a way to leverage both the higher system availability advantages offered by standard Concurrent Connections while maintaining the safety integrity offered by CIP Safety connections. Visit odva.org to obtain the latest version of The EtherNet/IP Specification and The CIP Safety Specification for all the details on Concurrent Connections for CIP Safety on EtherNet/IP.

About ODVA
ODVA is an international standards development and trade organization with members from the world’s leading automation suppliers. ODVA’s mission is to advance open, interoperable information and communication technologies for industrial automation. Its standards include the Common Industrial Protocol or “CIP™,” ODVA’s media independent network protocol – and industrial communication technologies including EtherNet/IP, DeviceNet® and others.

For interoperability of production systems and their integration with other systems, ODVA embraces the adoption of commercial-off-the-shelf, standard Internet and Ethernet technologies as a guiding principle. This principle is exemplified by EtherNet/IP – today’s leading industrial Ethernet network. Visit ODVA online at www.odva.org.

DeviceNet is a registered trademark of ODVA, Inc. CIP, CIP Safety, and EtherNet/IP are trademarks of ODVA, Inc. Other trademarks are property of their respective owners.

More Information

ODVA

For more information, contact:

Steven Fales
ODVA
4220 Varsity Drive, Suite A, Ann Arbor, MI 48108-5006 USA
TEL +1 734 975 8840
Fax +1 734 922 0027
Email sfales@odva.org

Related Story

ODVA’S 2023 Industry Conference Spotlights Latest in Single Pair Ethernet, 5G, Security, Process Automation, TSN, and Data Science

ODVA held its Industry Conference and 22nd Annual Meeting of Members in Europe for the first time in El Vendrell, Spain from October 17 – 19, 2023. Over 125 industry professionals from approximately 50 different companies hailing from all around the world were in attendance. Attendees were able to learn from a diverse set of presentations, including developments for Single Pair Ethernet (SPE), 5G, cybersecurity, process automation, TSN, and data science.

Related Articles


Latest Articles

  • Pilz’s International Online Training Offer: Secure Your Place Now for 2025!

    March 6, 2025 Pilz is offering online training courses in 2025 on popular topics such as Introduction to Machinery Regulation, Fundamentals of Machinery Safety, Fundamentals of Industrial Security, Basics of CE Marking, Safety Requirements and Integration of AGVs, Robot Safety and Integration, and many more. Make sure you register as soon as possible to secure… Read More…

  • Guide to Mechatronics – Part 8: Future Innovations

    Guide to Mechatronics – Part 8: Future Innovations

    March 5, 2025 The future of mechatronics is closely intertwined with the advancement of emerging technologies such as Artificial Intelligence (AI), the Internet of Things (IoT), and machine learning. These technologies are not only enhancing the capabilities of mechatronic systems but are also opening new possibilities and applications. Artificial Intelligence (AI):  AI’s integration into mechatronic… Read More…


Featured Article

Revolutionizing Material Movement with Autonomous Mobile Robots

Revolutionizing Material Movement with Autonomous Mobile Robots

In today’s fast-paced manufacturing and logistics industries, the need for efficient and flexible material movement solutions has never been greater. Traditional methods like conveyor systems, forklifts, and manual pushcarts have served us well, but they come with limitations.

That’s why Omron is thrilled to announce the launch of their game-changing MD Series of Autonomous Mobile Robots (AMRs). Read more


Products

  • Variable Speed Drives VLG3 Series from LOVATO

    March 11, 2025 LOVATO Electric expands its range of variable speed drives with the new VLG3 series, with three-phase power supply 380…480VAC 50/60Hz. The new VLG3 series range includes sizes from 0.4 to 22kW and integrates an EMC filter and a braking chopper as standard. The compact enclosure allows side-by-side installation, with the possibility of mounting on a DIN rail or with… Read More…

  • Advancing Electrocaloric Research with FLIR Thermal Imaging at Queen’s University Belfast

    March 11, 2025 At Queen’s University Belfast, researchers leveraged FLIR’s A8583 cooled mid-wave infrared (MWIR) camera and 5x microscope bayonet lens, and FLIR Research Studio software to investigate the electrocaloric effect—temperature changes in dielectric materials under an electric field. This combination of high-speed thermal imaging and advanced analysis tools enabled real-time observation of thermal fluctuations,… Read More…