Four Ways to Maximize the Value of Your Safety Interlocks

PB-50-Omron-SafetyInterlocks-400.jpg

October 27, 2021

Did you know that there are hidden savings in your machine safety devices? Manufacturers often overlook this type of technology in their cost-cutting plans, even though the devices’ proper selection, installation and maintenance can work wonders for the bottom line. In fact, these cost savings go beyond the technology’s primary function of keeping people safe.

Let’s take a look at four things you can do to get the greatest ROI on these devices.

1.  Get a risk assessment to make sure you’re getting the right type of safety interlock.

Choosing the right safety interlock for a machine might sound easy, but it shouldn’t be done outside the context of a risk assessment. This ensures that all machine cycle phases have been considered, that the risk level is fully understood, and that the performance level requirements are well known.

To find more information about these considerations, you can refer to ISO 14119:2013 (“Safety of machinery — Interlocking devices associated with guards — Principles for design and selection”). This safety standard offers principles for the selection of interlocks associated with guards and additional guidance to prevent tampering.

2.  Install the safety interlocks correctly.

When safety devices aren’t considered during the machine design stage, they can contribute to unplanned downtime, or – in the worst-case scenario – to an accident. This often occurs when an interlock is placed on the wrong side of a machine where it’s easy to manipulate or where it blocks the operator’s view of the process.

Other common mistakes include installing safety interlocks in ways that lead to hazards, such as when they expose actuators or don’t protect them from foreseeable external damage. According to ISO 14119:2013, Clause 5, correctly fastening your interlocks is crucial.

3.  Minimize the likelihood that your safety interlocks will be defeated.

Safety device manipulation can lead to serious and potentially fatal accidents in addition to causing unplanned downtime and raising costs. Safety devices on machinery, like safety interlocks, are typically defeated only if they affect the production cycle.

A safety strategy based on a risk assessment should be developed in parallel with the machine design process, so that the selected technology is suitable for the machine type and risk involved and will be installed in a way that prevents tampering. When safety device selection is left to the end of the design process, there’s often a high incentive to defeat it.

4.  Avoid fault masking.

Fault masking in one of the least understood potential hazards that can affect the overall performance level of a safety system and make it unsuitable for protecting operators. The term refers to the unintended resetting of the safety system even when using a safety-rated control system.

The risk of fault masking in the conventional series connection of the safety switches restricts the performance level that can be achieved. In some cases, depending on the performance level required, the risk of fault masking and its impact on the diagnostic coverage capabilities makes the solution unsuitable as part of a risk reduction strategy.

Source

Related Articles


Latest Articles

  • Small Town Infrastructure is Being Retrofitted, Federal Funding Helps Drive This Change

    September 9, 2025 By Krystie Johnston Municipalities across Canada are tackling climate change. From big cities to small towns, every action counts. Densely populated metropolitan areas are usually the first places that experience infrastructure upgrades to public buildings and structures because they need to support the increased demands of a growing population. But small towns… Read More…

  • Bossard is Scaling Front Line Flexibility

    September , 2025 Experience Smart Factory Solutions that Adapt to Your Operators’ Needs at FABTECH 2025 By Krystie Johnston Bossard is bringing the future of assembly and inventory management to FABTECH 2025 from September 8 – 11. Visit them at Booth #B13000, at the North Hall in the Automation Pavilion at McCormick Place in Chicago… Read More…


Featured Article

Revolutionizing Material Movement with Autonomous Mobile Robots

Revolutionizing Material Movement with Autonomous Mobile Robots

In today’s fast-paced manufacturing and logistics industries, the need for efficient and flexible material movement solutions has never been greater. Traditional methods like conveyor systems, forklifts, and manual pushcarts have served us well, but they come with limitations.

That’s why Omron is thrilled to announce the launch of their game-changing MD Series of Autonomous Mobile Robots (AMRs). Read more


Products

  • WAGO Expands 750 Series with New Functional Safety I/O Modules

    September 12, 2025 WAGO Expands 750 Series with New Functional Safety I/O Modules WAGO is introducing three functional safety I/O modules to be used with WAGO’s PFC controllers. These new 750 Series modules have four safe inputs along with either two safe outputs at 10 A/24 VDC, or four safe outputs at 2 A/24 VDC… Read More…

  • First Controllers in Trio’s Motion-PLC Range Simplify the Design of Stand-Alone Machines

    September 10, 2025 Trio Motion Technology has launched the first controllers from its new Motion-PLC range, designed to provide advanced motion control performance with the functionality and simplicity of a PLC. The new class of controller combines high-performance motion control over EtherCAT plus logic and I/O expansion, enabling faster, simpler machine development. The first models in… Read More…