Four Questions to Ask when Selecting a Guard Locking Safety Door Switch – Omron

MC Omron Four Qs 1 400

November 12, 2021

 

Machine safety terminology can be challenging, particularly when you need to pick a technology for your risk reduction strategy. This article will cover four key concepts relating to safety interlocks that will help you fully understand the technology before you select a part number. 

Question 1: Do you need power-to-lock or power-to-unlock?

The difference between power-to-lock and power-to-unlock has to do with whether energy is needed to lock or unlock the safety door.

•  Power-to-lock: Energy is required to keep door locked; door is released when energy is removed

•  Power-to-unlock: Door is mechanically locked and can be unlocked by applying energy

For safety reasons, the power-to-unlock principle is preferable. After a proper risk assessment, the power-to-lock principle may also be applied. Accordingly, interlocks with the power-to-unlock principle are typically used for personal protection, while those with the power-to-lock principle are used for process protection.

Question 2: When should you use a safety interlock with guard locking capabilities?

A safety interlock with only a guard interlocking function lets the guard be opened at any time regardless of the function or status of the machine. If the guard is not closed, the interlocking device will generate a stop command that prevents the machine from starting.

The guard interlocking function, also known as guard monitoring, won’t let the machine start while the guard is not closed at any time regardless of machine status. Because of this and the lack of guard locking function, this type of device can be used in applications when the access time is less than the overall system stopping performance.

For machinery where the stopping time of the overall system is higher than the time required to reach a hazardous area, guard interlocking devices with guard locking capabilities are required. This type of device is ideal for applications in which workers risk being exposed to machine overrun, particularly with high-inertia machines.

Access time can be calculated based on the distance between the hazard zone and the guard together with the approach speed. For further information, you can refer to ISO 13855:2010

Safety of machinery — Positioning of safeguards with respect to the approach of the human body. You can learn more about stop time measurement here.

Question 3: What is the holding force?

The holding force refers to the amount of force a guard-locking device can resist without being damaged. Knowing the holding force is important for ensuring that further use of the device will not compromise its integrity to the point where it will fail to close completely.

The holding force specified shall be appropriate to the intended application and construction of the guard. Normally, the machine designer will determine the appropriate holding forced based on the application and refer to any type-C standards as needed.

Question 4: What’s the difference between auxiliary, escape and emergency release?

Knowing the difference between these things is an important consideration for choosing a door switch device. The first one – auxiliary release – refers to the possibility of manually (by means of a tool or a key) releasing the guard lock from the outside in case of a failure. This feature is not suitable for emergency escape if a person is trapped inside a hazardous area.

Emergency release refers to the possibility of releasing the guard lock manually from outside the safeguarded area without any additional tools in the case of an emergency. This feature can be useful when it’s necessary to help trapped people escape or to fight a fire.

The escape release refers to the possibility of manually releasing the door (without the help of guard locking) from inside the safeguarded area. This feature allows people to escape on their own if they’re trapped inside a dangerous area. 

 

For more on Omron’s new D41 Series, click here 

 

Related Articles


Latest Articles

  • The Power of OMRON’s Sysmac Studio: Unify Automation and Integrate Safety

    November 7, 2025 By Omron Automation Industry moves fast. Outpace obsolescence with OMRON’s Sysmac Studio. Designed to empower operations from the edge to the cloud, it unifies automation by prioritizing safety and security. Built for today, ready for the future. Today, the factory floor faces pressure from suppliers, consumers, competition, and emerging technologies. Operation teams are looking… Read More…

  • Don’t Serve Before Tasting: A Lean Approach to Gated Management for SME Product Launches

    November 6, 2025 By Swathi Mohan, Leanacle Inc. Ever tried serving dinner before tasting it? That’s what many small and mid-sized manufacturers unknowingly do when they rush a new product into production. On paper, everything looks perfect: BOMs finalized, fixtures designed, suppliers lined up. But the first batch rolls out, and suddenly the “dish” tastes wrong: tolerances don’t hold, costs… Read More…


Featured Article

Revolutionizing Material Movement with Autonomous Mobile Robots

Revolutionizing Material Movement with Autonomous Mobile Robots

In today’s fast-paced manufacturing and logistics industries, the need for efficient and flexible material movement solutions has never been greater. Traditional methods like conveyor systems, forklifts, and manual pushcarts have served us well, but they come with limitations.

That’s why Omron is thrilled to announce the launch of their game-changing MD Series of Autonomous Mobile Robots (AMRs). Read more


Products

  • Moxa’s Vision for Smarter Industrial Network Management

    November 6, 2025 Simplified Management to Optimize Network Operations Building on the insights from Futureproof Your OT with Moxa’s Secure Edge-to-Core Networking, this article highlights how intelligent network management enables scalable, secure, and resilient industrial networks with real-time visibility and simplified control. If you want to manage converged networks, you need to implement user-friendly and scalable… Read More…

  • New Power Supply with IO-Link Interface and Integrated Display Introduced by PULS

    November 6, 2025 PULS’ new CP20.248-IOL is a highly reliable 24 Vdc DIN rail power supply. The device provides efficient and time-saving configuration, operation monitoring and remote control. Using the built-in IO-Link interface and the front panel display, user-defined power supply and application data, such as the AC and DC quality of the system, can be monitored in… Read More…